

NATIONAL INSTITUTE OF PHYSICS

COLLEGE OF SCIENCE University of the Philippines Diliman, Quezon City 1101 Metro-Manila

Course	PHYSICS 72 (ELEMENTARY PHYSICS II) 1st Semester AY 2014-2015			
Credit	4 units			
Course Description	An introduction to the classical theory of electricity, magnetism and light.			
Prerequisites	Physics 71, Math 53		Co-requisite	Math 54
Course Goal	To understand the b	asic laws goverr	ning electricity, magn	etism and light
		Pre-final grad exempted fro	de / Final grade if om Final Exam	Final grade if not exempted from Final Exam
	3 Long Exams	60%		60%
Course Requirements	1 Final Exam	20% X average of 3 LEs		20%
	Recitation	15%		15%
	Lecture		5%	5%
References	UNIVERSITY PHYSICS, 12th Edition by Young and Freedman PHYSICS for Scientist and Engineers, 4 th Edition by Paul Tipler			
	1 st Long Exam		Monday, September 22, 2014, 12:15-2:15PM	
	2 nd Long Exam		Monday, October 27, 2014, 12:15-2:15PM	
Important	3 rd Long Exam		Monday, December 1, 2014, 12:15-2:15PM	
Dates	Deadline for Dropping of Subjects		Thursday, November 6, 2014	
	Deadline for Filing LOA		Wednesday, November 19, 2014	
	End of Classes		Friday, December 5, 2014	
Lecturer: Faculty Room: Consultation Schedule: Email:		Recitation Teacher Faculty Room: Consultation Scheder Email:	ır: Jle:	

COURSE POLICIES

A. General Policies

- 1. There are four exams (three long exams and one final exam) to be taken on the scheduled date and time. Each exam is multiplechoice type and has 40 items. Calculators and other electronic devices are not allowed during exams.
- 2. A student can be excused for only <u>one</u> missed long exam. A valid excuse includes death in the immediate family, or illness. The student should present an excuse letter, duly signed by his/her College Secretary or a medical certificate issued by the UP Health Service, to his/her lecturer on the first class meeting he/she is able to come back.
- 3. A student who missed a long exam due to valid reasons should take the make-up exam. There is <u>no</u> make-up for the final exam.
- 4. A student who missed an exam (long exam/final exam) without a valid excuse will automatically get <u>zero</u> for that exam.
- 5. A student may be exempted from taking the final exam if he/she has:
 - a. taken all long exams whether regular or make-up exam.
 - b. passed each long exam.
 - c. passing recitation grade.
 - d. pre-final grade of at least 2.25.
- 6. If the conditions in (5) above are satisfied and the student chooses <u>not</u> to take the final exam, his effective final exam score is the average of all the three long exams.

B. Lecture and Recitation classes

- 1. Homework, quizzes, problem sets, and attendance incentives are included in the 5% lecture grade.
- 2. Recitation activities are given every Thursday during class hours in the designated recitation rooms.
- 3. A student who missed a recitation activity for valid reasons should present his/her excuse letter, duly signed by his/her College Secretary or a medical certificate issued by the UP Health Service, to his/her recitation instructor

Grading System	
Grade(%) ≥ 90.00	1
90.00 > Grade(%) ≥ 85.00	1.25
85.00 > Grade(%) ≥ 80.00	1.5
80.00 > Grade(%) ≥ 75.00	1.75
75.00 > Grade(%) ≥ 70.00	2
70.00 > Grade(%) ≥ 65.00	2.25
65.00 > Grade(%) ≥ 60.00	2.5
60.00 > Grade(%) ≥ 55.00	2.75
55.00 > Grade(%) ≥ 50.00	3
50.00 > Grade(%) ≥ 45.00	4
45.00 > Grade(%)	5

on the first recitation class meeting he/she is able to come back. A student who missed a recitation activity without a valid excuse will automatically get zero for that activity.

- 4. The weight of the *excused* missed recitation will be removed from the total final recitation grade.
- 5. Only three missed recitations can be excused. Beyond the three excused missed recitations, the student will be given a grade of zero.

C. Attendance

1. University rules apply for attendance. A grade of 5.0 will automatically be given to a student who missed at least 12 class meetings (excused or unexcused).

D. Grading System

- 1. A student who missed a long exam and its corresponding make-up exam due to valid reasons will be given a grade of INC only if his/her class standing (assuming a zero score in the missed long exam) is at least 4.0.
- 2. A student who missed the final exam due to valid reasons will be given a grade of INC only if his/her class standing (assuming a zero score in the final exam) is at least 4.0.
- 3. A grade of 4.0 can only be removed by taking a removal exam. A student must be enrolled during the semester he/she takes the removal exam. Credit for the course, however, can be obtained upon passing the course at re-enrollment. If the student does not re-enroll or take the removal exam within one year from this semester, the grade of 4.0 will automatically become a grade of 5.0.
- 4. There is <u>no</u> forced drop. The lecturer will only give a grade of DRP upon the request of the student and upon the completion of the online dropping module.
- 5. A student granted an LOA would only be given a grade of either DRP or 5.0. A grade of 5.0 is given if the LOA is granted after ³/₄ of the semester has lapsed and the student's standing is failing; otherwise DRP is given.

E. Removal Exam

- 1. The removal exam for this semester is a 16-item problem solving type of exam. Calculators and other electronic devices are not allowed during the exam.
- 2. Removal exam will only be given to students with completed removal exam forms.

F. Student conduct and discipline

- 1. University rules apply for cheating. Any form of cheating in examinations or any act of dishonesty in relation to studies, such as plagiarism, shall be subject to disciplinary action.
- 2. Observe courtesy during exams and class hours by turning off all electronic devices (i.e. laptops, tablet computers, cellphones, etc.).
- 3. Any form of vandalism is strictly prohibited in the NIP building. A student who is found guilty will be subject to disciplinary action.
- 4. There are CCTV cameras at different places inside and outside the NIP building that monitor and record any untoward incidents 24/7.

COURSE COVERAGE

Chapter 21: Electric Charge and Electric Field

Section	Objectives
21-1 Electric Charge	 Discuss the dichotomy, quantization and conservation of electric charge Given the initial/final charge distribution, calculate the final/initial charge distribution using conservation principles
21-2 Conductors, Insulators, and Induced Charges	 Predict charge distributions, and the resulting attraction or repulsion, in a system of charged insulators and conductors Outline, verbally and diagrammatically, the process of charging
21-3 Coulomb's Law	 Calculate the net electric force on a point charge exerted by a system of point charges 21.1, 21.7, 21.10, 21.12, 21.13, 21.24
21-4 Electric Field and Electric Forces	 Describe the electric field due to a point charge quantitatively and qualitatively Establish the relationship between the electric field and the electric force on a test charge Predict the trajectory of a massive point charge in a uniform electric field 21.25, 21.27, 21.31, 21.32, 21.33, 21.41
21-5 Electric Field Calculations	 Evaluate the electric field at a point in space due to a system of arbitrary charge distributions 21.45, 21.47, 21.48, 21.50, 21.54, 21.55, 21.56
21-6 Electric Field Lines	 Given the electric field lines, deduce the electric field vectors and nature of electric field sources 21.62
21-7 Electric Dipoles	 Discuss the motion of an electric dipole in a uniform electric field 21.66, 21.71

Chapter 22: Gauss's Law

4 meetings

Section	Objectives
22-1 Charge and	 Evaluate the electric flux through a surface given the electric field
Electric Flux &	• Relate the electric flux thru a closed surface to the total charge inside and
22-2 Calculating	outside the surface
Electric Flux	• 22.6, 22.8
22.2 Cause' Law	 Express Gauss's law verbally and mathematically
22-3 Gauss Law	• 22.10, 22.15
22-4 Applications of	• Use Gauss's law to calculate the electric field generated at a point by highly
Cause' Law	symmetrical charge distributions
Gauss Law	• 22.21, 22.22, 22.23
22-5 Charges on	• Predict the charge distribution induced on the surface of a conductor in the
Conductors	presence of a static charge and external electric field
Conductors	• 22.28, 22.30, 22.31

Chapter 23: Electric Potential

4 meetings

Section	Objectives
23-1 Electric Potential	 Relate the electric potential with work, potential energy and electric field
Energy	• 23.1, 23.5, 23.7, 23.8
22 2 Electric Detential	 Evaluate the potential at any point in a region containing point charges
23-2 Electric Potential	 23.14, 23.16, 23.21, 23.28, 23.29, 23.31
22.2 Colculating	• Determine the electric potential function at any point due to continuous charge
Electric Potential	distributions
	 23.32, 23.33, 23.35, 23.37, 23.41, 23.44
	• Given the equipotential lines, evaluate the electric field vector, nature of the
	electric field sources and electrostatic potential
22.4 Equipotontial	• Calculate the work done on a point charge relative to a set of equipotential
Surfaces	surfaces/lines
Surfaces	• Predict the distribution of charges at the surface of an arbitrarily shaped
	conductor
	• 23.45
	• Given a mathematical function describing the potential in a region of space,
23-5 Potential Gradient	calculate the electric field in the region and vice versa
	• 23.47, 23.48

Chapter 24: Capacitance and Dielectrics

3 meetings

Section	Objectives
24-1 Capacitance and Capacitors	 Deduce the effects on the capacitance, charge, and potential difference of simple capacitors (e.g. parallel-plate, spherical, cylindrical) when the geometry, potential difference, or charge is changed 24.2, 24.3, 24.5, 24.8
24-2 Capacitors in Series and Parallel	 Calculate the equivalent capacitance of a network of capacitors connected in series/parallel Given capacitors connected in series/parallel, determine the total charge, the charge on, and the potential difference across each capacitor in the network 24.25
24-3 Energy Storage in Capacitors and Electric-field Energy	 Given the geometry and the potential difference across the capacitor, determine the potential energy stored inside the capacitor Predict the effects on the final potential difference and change in potential energy of a capacitor when either the geometry or charge is changed Determine the energy density and the electric field inside a capacitor with a given configuration 24.28, 24.30, 24.33, 24.37
24-4 Dielectrics	 Describe the effects of inserting dielectric materials on the capacitance, charge and electric field of a capacitor 24.39, 24.44, 24.45, 24.47

Chapter 25: Current, Resistance, and Electromotive Force

Section	Objectives
25-1 Current	 Relate the drift velocity of a collection of charged particles to the electrical current and current density

	• 25.3, 25.4
25-2 Resistivity	 Describe the ability of a material to conduct current in terms of resistivity and conductivity 25.10, 25.12, 25.17, 25.24, 25.30
25-3 Resistance	 Determine the effect of a conductor's geometry on its ability to conduct current Differentiate ohmic and non-ohmic materials in terms of their I-V curves 25.31, 25.35, 25.37
25-5 Energy and Power in Electric Circuits	 Given an emf source connected to a resistor, determine the power supplied or dissipated by each element in a circuit 25.48, 25.53

Chapter 26: Direct-Current Circuits

3 meetings

5 meetings

Section	Objectives
26-1 Resistors in Series and Parallel	 Given a network of resistors connected in series and/or parallel, evaluate the equivalent resistance, current and voltage Evaluate the voltage drop and current passing thru each circuit element 26.4, 26.5, 26.7, 26.8, 26.11, 26.13
26-2 Kirchhoff's Rules	 Given a circuit diagram, calculate the current through and voltage across a circuit element using Kirchhoff's loop and junction rules 26.22, 26.23
26-4 R-C Circuits	 Describe the behavior of current, potential, and charge as a capacitor is charging or discharging in terms of the initial, transient, and steady-state conditions 26.38, 26.41, 26.47, 26.49

1st LONG EXAM

September 22, 2014 (MON) 12:15-2:15PM

Chapter 27: Magnetic Field and Magnetic Forces

Section Objectives Describe the interaction between poles of magnets 27-1 Magnetism Differentiate electric interactions from magnetic interactions • Determine the net force on a moving point charge in the presence of both • 27-2 Magnetic Field magnetic and electric fields 27.1, 27.2, 27.5 Given the magnetic field lines, deduce the magnetic field vector and the 27-3 Magnetic Field magnetic force on a moving charged particle Lines and Magnetic Argue why the magnetic flux on a closed surface is zero Flux Evaluate the total magnetic flux through an open surface 27.10, 27.11, 27.12 27-4 Motion of Describe the motion of a charged particle in a magnetic field in terms of its • Charged Particles in a speed, acceleration, cyclotron radius, cyclotron frequency, and kinetic energy Magnetic Field 27.14, 27.15, 27.18, 27.22, 27.24, 27.27 27-6 Magnetic Force Evaluate the magnetic force on an arbitrary wire segment placed in a uniform magnetic field on a Current-Carrying <u>Conductor</u> 27.35, 27.38, 27.40 27-7 Force and Torque Discuss the motion of a magnetic dipole in a uniform magnetic field on a Current Loop 27.44, 27.45, 27.46

Chapter 28: Sources of Magnetic Field

Section	Objectives
28-1 Magnetic Field of a Moving Charge	 Evaluate the magnetic field vector at a given point in space due to a moving point charge 28.1, 28.1 28.5, 28.7
28-2 Magnetic Field of a Current Element	 Evaluate the magnetic field vector at a given point in space due to an infinitesimal current element 28.9, 28.12, 28.13
28-3 Magnetic Field of a Straight Current- Carrying Conductor	 Evaluate the magnetic field vector at any point in space due to a straight current-carrying conductor Use superposition principle to calculate the magnetic field due to one or more straight wire conductors 28.16, 28.17, 28.19, 28.24

28-4 Force Between	Calculate the force per unit length on a current carrying wire due to the
Parallel Conductors	magnetic field produced by other current-carrying wires
	 28.25, 28.26, 28.27, 28.28, 28.29
28-5 Magnetic Field of a Circular Current Loop	 Evaluate the magnetic field vector at any point along the axis of a circular current loop 28.30, 28.31, 28.33, 28.34
28-6 Ampere's Law & 28-7 Applications of Ampere's Law	 Use Ampere's law to calculate magnetic fields for highly symmetric current configurations 28.35, 28.36, 28.37, 28.38, 28.39, 28.44

Chapter 29: Magnetic Induction

4 meetings

Section	Objectives
29-1 Induction Experiments	 Identify the factors that affect the magnitude of the induced emf and the magnitude and direction of the induced current
29-2 Faraday's Law	 Calculate the induced emf in a closed loop due to a time-varying magnetic flux using Faraday's Law 29.1, 29.3, 29.6, 29.7, 29.8, 29.9, 29.14
29-3 Lenz's Law	 Describe the direction of the induced electric field, magnetic field and current on a conducting/non-conducting loop using Lenz's Law 29.15, 29.16, 29.18, 29.19, 29.20
29-4 Motional Electromotive Force	 Given the velocity and the orientation of a conductor in a uniform magnetic field, determine the induced emf, electric field, magnetic field and current 29.21, 29.22, 29.24, 29.25, 29.26
29-5 Induced Electric Fields	 Compare and contrast electrostatic electric field and non-electrostatic/induced electric field 29.28, 29.29, 29.30, 29.33
29-7 Displacement Current and Maxwell's Equations	 Calculate the displacement current in circuits with discontinuous currents 29.35, 29.37, 29.38, 29.39

Chapter 30: Inductance

4 meetings

Section	Objectives
30-1 Mutual Inductance	 Calculate mutually-induced emf given the mutual inductance between two circuits 30.1, 30.2, 30.5
30-2 Self-inductance and Inductors	 Calculate self-induced emf given the self-inductance of the circuit 30.6, 30.9, 30.11
30-3 Magnetic-Field Energy	 Calculate the total magnetic energy stored in an inductor and its magnetic energy density after current is increased from zero to a final steady-state value 30.12, 30.13, 30.16, 30.17
30-5 The L-C Circuit	 Describe the charge and current variation in time in an L-C circuit 30.28, 30.31, 30.32, 30.35, 30.36
30-6 The L-R-C Series Circuit	 Describe the charge, voltage and current variation in time for underdamped, critically-damped, and overdamped L-R-C circuits 30.38, 30.39, 30.40, 30.41

Chapter 31: Alternating Current

Section	Objectives
31-1 Phasors and Alternating Currents	 Use phasor diagrams to represent sinusoidally-varying voltage and current Calculate root-mean-square (rms) values of sinusoidal voltage and current 31.1, 31.2, 31.3
31-2 Resistance and Reactance	 Identify the amplitude and phase relationship between voltage and current for a resistor, inductor or capacitor in an AC circuit Determine the respective inductive and capacitive reactance of an inductor and capacitor in an AC circuit 31.4, 31.5, 31.6, 31.7, 31.12
31-3 The L-R-C Series Circuit	 Calculate the impedance of a series L-R-C circuit Relate resistance, inductance, and capacitance to the resulting phase angle between voltage and current in the L-R-C series circuit 31.14, 31.15, 31.19, 31.20, 31.21, 31.23

31-4 Power in Alternating-Current Circuits	 Differentiate between instantaneous and average power delivered to various circuit elements Calculate the average power and power factor of a series L-R-C circuit 31.26, 31.27, 31.29, 31.30
31-5 Resonance in Alternating-Current Circuits	 Identify conditions for resonance in a series L-R-C circuit Describe what happens to the impedance and current of a series L-R-C circuit at resonance 31.32, 31.33, 31.36

2nd LONG EXAM

October 27, 2014 (MON) 12:15-2:15PM

Chapter 32: Electromagnetic Waves

3 meetings

Section	Objectives
32-1 Maxwell's Equations and Electromagnetic Waves	 Identify the physical implications of each of the four Maxwell's equations Relate the wavelength and frequency of an electromagnetic (EM) wave Explain the principle of producing EM waves
32-2 Plane Electromagnetic Waves and Speed of Light	 Relate the amplitudes of electric- and magnetic-field of an electromagnetic wave in vacuum and in any medium Relate the speed of an electromagnetic wave in vacuum and in any medium to the permittivity and permeability 32.1, 32.3, 32.40
32-3 Sinusoidal Electromagnetic Waves	 Given the wave equation, identify the direction of the electric and magnetic field and its direction of propagation 32.5, 32.7, 32.9
32-4 Energy and Momentum in Electromagnetic Waves	 Determine the direction and magnitude of either of the three: the electric field, the magnetic field or the Poynting vector, given the other two Describe the relationship between the Poynting vector, intensity, and energy transport in an electromagnetic wave Use the concept of radiation pressure to calculate the force experienced by totally reflecting and absorbing surfaces 32.16, 32.25, 32.27

Chapter 33: Nature and Propagation of Light

Section	Objectives
33-1 The Nature of	 Use the concept of wavefront and rays to describe wave propagation 22.1.22.2.23.7.22.0.22.12
LIGHT	 JS.1, JS.3, JS.7, JS.9, JS.15 Dradict the direction of the reflected light using the Law of Deflection
33-2 Reflection and Refraction	 Evaluate the index of refraction of a material and its effect on the path, wavelength, and speed of light Brodict the direction of the refracted light using Spell's Law
	 33.19, 33.21, 33.23
33-3 Total Internal Reflection	 Given the indices of refraction of different materials, determine when total internal reflection occurs
33-4 Dispersion	 Relate dispersion to the color separation of white light as it travel through a prism at non-normal incidence Deduce the speed of light in a medium from its dispersion curve
33-5 Polarization	 Identify the different types of polarization and the different methods of polarizing light Determine the polarizing angle given the indices of refraction of the incidence and transmission side Use Malus' Law to calculate the intensity of the transmitted light after passing through a series of polarizers 33.25, 33.27, 33.31
(Optional) 33-6 Scattering of Light	 Describe qualitatively the intensity of the scattered light as it varies with wavelength

Chapter 34: Geometric Optics

6 meetings

Section	Objectives
34-1 Reflection and	Given an object in front of a plane mirror:
	 Calculate the location of the image
Refraction at a Plane	 Calculate the lateral magnification of the image
Surface	 Determine whether the image will be real or virtual, and upright or
	inverted
	 34.1, 34.2, 34.3, 34.61
	Given an object in front of a spherical mirror:
	 Calculate the location of the image
34-2 Reflection at a	 Calculate the lateral magnification of the image
Spherical Surface	 Determine whether the image will be real or virtual, and upright or
	inverted
	• Given an object placed in front of a spherical mirror, draw the principal rays
	and locate the image
	• 34.5, 34.9, 34.13, 34.14
	• Given an object in front of a spherical surface or interface separating two
	media:
24.2 Definetion at a	 Calculate the location of the image Calculate the location of the image
Shorical Surface	 Calculate the lateral magnification of the image Determine whether the image will be real or virtual, and upright or
Spherical Surface	 Determine whether the image will be real of virtual, and upright of inverted
	Calculate the apparent depth of an object when observed across a boundary of
	changing indices of refraction
	• 34.17, 34.18, 34.19, 34.82
	Differentiate a converging lens from a diverging lens
	 Given an object in front of a lens or series of lenses:
	 Calculate the location of the image
	 Calculate the magnification of the image
34-4 Thin Long	 Determine whether the image will be real or virtual, and upright or
34-4 Thin Lens	inverted
	• Given an object placed in front of a lens or series of lenses, draw the principal
	rays and locate the image
	Relate the radii of curvature of the lens in air and its index of refraction to the
	focal length of the lens
	• 34.23, 34.27, 34.30, 34.34

Chapter 35: Interference

Section	Objectives
35-1 Interference and Coherent Sources	Determine the conditions for interference to occur
	• Relate path difference to two types of interference (constructive and destructive
	interference)
	• 35.1, 35.5, 35.7, 35.44
35-2 Two-courco	Locate the spatial points where constructive and destructive interference takes
interference of Light	place
	• 35.9, 35.12, 35.16, 35.18
35-3 Intensity in Interference Patterns	Relate path difference to phase difference
	• Identify the type of interference, given the path difference and the phase
	difference
	Relate the effects of the slit separation, screen and slit distance, and
	wavelength on the interference pattern
	• 35.19, 35.21, 35.22, 35.25
35-4 Interference in Thin Films	• Predict the occurrence of constructive and destructive reflection from thin films,
	based on its thickness, index of refraction, and wavelength of illumination
	• 35.27, 35.28, 35.36, 35.57

Chapter 36: Diffraction

2 meetings

Section	Objectives
36-2 Diffraction from Single Slit	 Locate the dark fringes of the diffraction pattern and determine the width of the central maximum 36.1, 36.8, 36.13, 36.55
36-3 Intensity in Single-slit Pattern	 Relate the effects of the slit width, screen and slit distance, and wavelength on the diffraction pattern 36.14, 36.15, 36.17, 36.57
36-4 Multiple Slits	 Describe the combined effects of diffraction and interference on the pattern produced by two or more slits with finite width Calculate the number of fringes within the central maximum 36.22, 36.24, 36.25, 36.26

3rd LONG EXAM

December 1, 2014 (MON) 12:15-2:15PM